Character Animation

- 15.05.2008
- Inverse Kinematics: Inverse Jacobian + CCD
- Speaker: Fabian Lessle
What is kinematics?

- science of motion without regard to the masses or forces that bring out the motion ("how", not "why")
- Forward kinematics
- Inverse kinematics
Demo
Why IK?

- robotics (e.g. to adjust a tool to arriving parts on a conveyor belt)
- interactive computer graphics (e.g. automatic generation of key frames based on user/world input)
- assisting 3D animators (pure FK means lots of work)
How to IK?
analytical vs. numerical

- **Analytical methods:**
 - fast
 - precise
 - often impossible
 (- precise)

- **Numerical methods:**
 - not always fast
 - not always precise
 + practical for complex systems
 (+ close „solution“ better than no solution)
The Inverse Jacobian: What is a Jacobian? (I)

- Problem: How does angle configuration vector Θ correspond to end effector position vector P?
- Solution: $P = F(\Theta)$?

- Actual problem: How does a change in Θ correspond to a change in P?
- $dP = dF/d\Theta \times d\Theta$?
The Inverse Jacobian: What is a Jacobian? (II)

- F is a function from \mathbb{R}^m to \mathbb{R}^n, with m being the system's degrees of freedom, n being the end effector's (theoretical) DOF. E.g. in a 3D system n would be 6 (3D position + 3D orientation), m would be the number of joints (assuming 1 DOF per joint).

- The nxm matrix of partial derivatives, $dF/d\Theta$, is called the Jacobian. The Jacobian can be thought of as a mapping of the velocities of joint angles to the end effector's velocity.
The Inverse Jacobian: What is a Jacobian? (III)

- $V = J(\Theta)\theta$

- $V ("Velocity") := P_d - P$ (Difference between desired and current end-effector position)

- $J(\Theta) :=$ Jacobian of current configuration Θ

- $\Theta :=$ change in configuration (or "angle velocities")
The Inverse Jacobian: What is an example?
The Inverse Jacobian: What is an example?

- Joints: P0 (0,1)
 P1 (4,0)
 P2 (5,2)
- Rotation axis: (0,0,1) for all joints
- End effector: E (6,3), Goal: G (4,3)
- Jacobian:

\[
J = \begin{pmatrix}
(0,0,1) \times (E-P0)_x & (0,0,1) \times (E-P1)_x & (0,0,1) \times (E-P2)_x \\
(0,0,1) \times (E-P0)_y & (0,0,1) \times (E-P1)_y & (0,0,1) \times (E-P2)_y \\
(0,0,1) \times (E-P0)_z & (0,0,1) \times (E-P1)_z & (0,0,1) \times (E-P2)_z
\end{pmatrix}
\]

\[
= \begin{pmatrix}
-2 & -3 & -1 \\
6 & 2 & 1 \\
0 & 0 & 0
\end{pmatrix}
\]
The Inverse Jacobian: Why the example?

- The Example reminds us of an important fact: Most matrices are not invertible. To be invertible, the Jacobian would have to be square with a determinant $\neq 0$.
- Dimensions are (more or less) dictated by the system's number of joints.
- Values will change over time, so will the Jacobian's determinant.
- So how can we compute $\theta = J^{-1}v$?
The Inverse Jacobian: Actually **Pseudoinverse**...

- Properties of the pseudoinverse:
 (for real valued matrices)

 - $A A^+ A = A$
 - $A^+ A A^+ = A^+$
 - $(A A^+)^T = A A^+$
 - $(A^+ A)^T = A^+ A$
The Pseudoinverse Jacobian

- Instead of J^{-1} compute the Moore-Penrose pseudoinverse J^{+}:
 1. Determine singular value decomposition $J = USV^{T}$
 2. P-invert S to S^{+} by taking the reciprocal of each non-zero element on the diagonal
 3. Then $J^{+} = VS^{+}U^{T}$
- Solve for θ
- Increment θ by $\varepsilon \theta$
- Repeat all steps until done
Oh no, the singularity!
Problems of the pseudoinverse

- Example: No linear combination of angle velocities causes direct movement towards the goal location; only 1 DOF left
- Causes discontinuities in pseudoinverse
- Pseudoinverse tends to produce large joint velocities in vicinity of singular configurations, causing instability and wild oscillation
From Pseudoinverse to Pseudophysics

- **Virtual work:**
 \[W = \text{force} \times \text{distance} \]
 \[W = \text{torque} \times \text{angle} \]
- **Work must be equal:**
 \[(1) \ F \ \Delta x = \tau \ \Delta q \]
 \[(2) \ F^T \ \Delta x = \tau^T \ \Delta q \]
- **Forward kinematics:**
 \[(3) \ \Delta x = J \ \Delta q \]
- **(3) into (2)**
 \[F^T J \ \Delta q = \tau^T \ \Delta q \]
 \[F^T J = \tau^T \]
 \[\tau = J^T F \]
The Transposed Jacobian

- Instead of J^+ determine J^T
- Compute $\theta = K J^T v$
 where K is a constant scaling matrix
- Increment Θ by $\epsilon\Theta$
- Repeat all steps until done

- K is used to counter scaling problems.
 Welman suggests $K_i = 1 / (\omega_i a_i)$
 with ω_i proportional to the length of link i
Another method: Cyclic Coordinate Descend

- minimizing system error by adjusting each joint one at a time
- start at the last link, work backwards, repeat if necessary
Cyclic Coordinate Descend: Optimization Step (in 2D)

- EffGoal = Goal position
- EffCur = Current position of the end-effector
- j_i = Current joint
- GoalV = normalize(EffGoal - j_i.position);
- CurV = normalize(EffCur - j_i.position);
- Angle = acos(CurV \cdot GoalV);
- Direction = ((CurV \times GoalV).z > 0 ? -1 : 1);
- j_i.rotation += Direction \cdot Angle;
- i++;
CCD Example:
Done after 1 move

- The first example again.
 And this time it's actually being solved. :D
CCD Example:
Two iterations away
CCD Example: Barely reachable
Cyclic Coordinate Descend: Improvements

- easy to implement joint restrictions since each joint is handled as a single problem
- damping may be used to avoid very unnatural looking results
- constraints via penalty method
Jacobian vs. CCD: Comparison (I)

- **Transposed Jacobian:**
 + intuitive, smooth results
 - can be made quite stable around kinematic singularities
 - slow convergence

- **CCD:**
 - less intuitive results
 + complete immunity to singularities
 + better convergence
Jacobian vs. CCD: Comparison (II)

- Illustrating the „smooth results“ argument:
Jacobian vs. CCD: Comparison (III)
Jacobian vs. CCD: Comparison (IV)
Sources

- Welman (1993) Inverse Kinematics and Geometric Constraints for Articulated Figure Manipulation
- Wikipedia, the free encyclopedia